Photoconductivity, pH Sensitivity, Noise, and Channel Length Effects in Si Nanowire FET Sensors
نویسندگان
چکیده
Silicon nanowire (NW) field-effect transistor (FET) sensors of various lengths were fabricated. Transport properties of Si NW FET sensors were investigated involving noise spectroscopy and current-voltage (I-V) characterization. The static I-V dependencies demonstrate the high quality of fabricated silicon FETs without leakage current. Transport and noise properties of NW FET structures were investigated under different light illumination conditions, as well as in sensor configuration in an aqueous solution with different pH values. Furthermore, we studied channel length effects on the photoconductivity, noise, and pH sensitivity. The magnitude of the channel current is approximately inversely proportional to the length of the current channel, and the pH sensitivity increases with the increase of channel length approaching the Nernst limit value of 59.5 mV/pH. We demonstrate that dominant 1/f-noise can be screened by the generation-recombination plateau at certain pH of the solution or external optical excitation. The characteristic frequency of the generation-recombination noise component decreases with increasing of illumination power. Moreover, it is shown that the measured value of the slope of 1/f-noise spectral density dependence on the current channel length is 2.7 which is close to the theoretically predicted value of 3.
منابع مشابه
Representation of the temperature nano-sensors via cylindrical gate-all-around Si-NW-FET
In this paper, the temperature dependence of some characteristics of cylindrical gate-all-around Si nanowire field effect transistor (GAA-Si-NWFET) is investigated to representing the temperature nano-sensor structures and improving their performance. Firstly, we calculate the temperature sensitivity of drain-source current versus the gate-source voltage of GAA-Si-NWFET to propose the temperatu...
متن کاملRepresentation of the temperature nano-sensors via cylindrical gate-all-around Si-NW-FET
In this paper, the temperature dependence of some characteristics of cylindrical gate-all-around Si nanowire field effect transistor (GAA-Si-NWFET) is investigated to representing the temperature nano-sensor structures and improving their performance. Firstly, we calculate the temperature sensitivity of drain-source current versus the gate-source voltage of GAA-Si-NWFET to propose the temperatu...
متن کاملEffect of Aspect Ratio (Length:Diameter) on a Single Polypyrrole Nanowire FET Device
The effect of different aspect ratios (length to diameter ratio, L:D) on single polypyrrole (Ppy) nanowire based field effect transistor (FET) sensors for real time pH monitoring was studied. Ppy nanowires with diameters of ∼60, ∼80, and ∼200 nm were synthesized by using electrochemical deposition inside anodized aluminum oxide (AAO) template and were assembled using AC dielectrophoretic alignm...
متن کاملApplication of Single-Electron Transistor to Biomolecule and Ion Sensors
The detection and quantification of chemical and biological species are the key technology in many areas of healthcare and life sciences. Field-effect transistors (FETs) are sophisticated devices used for the label-free and real-time detection of charged species. Nanowire channels were used for highly sensitive detections of target ion or biomolecule in FET sensors, however, even significantly ...
متن کاملImproved sensing characteristics of dual-gate transistor sensor using silicon nanowire arrays defined by nanoimprint lithography
This work describes the construction of a sensitive, stable, and label-free sensor based on a dual-gate field-effect transistor (DG FET), in which uniformly distributed and size-controlled silicon nanowire (SiNW) arrays by nanoimprint lithography act as conductor channels. Compared to previous DG FETs with a planar-type silicon channel layer, the constructed SiNW DG FETs exhibited superior elec...
متن کامل